Intragene higher order repeats in neuroblastoma breakpoint family genes distinguish humans from chimpanzees.
نویسندگان
چکیده
Much attention has been devoted to identifying genomic patterns underlying the evolution of the human brain and its emergent advanced cognitive capabilities, which lie at the heart of differences distinguishing humans from chimpanzees, our closest living relatives. Here, we identify two particular intragene repeat structures of noncoding human DNA, spanning as much as a hundred kilobases, that are present in human genome but are absent from the chimpanzee genome and other nonhuman primates. Using our novel computational method Global Repeat Map, we examine tandem repeat structure in human and chimpanzee chromosome 1. In human chromosome 1, we find three higher order repeats (HORs), two of them novel, not reported previously, whereas in chimpanzee chromosome 1, we find only one HOR, a 2mer alphoid HOR instead of human alphoid 11mer HOR. In human chromosome 1, we identify an HOR based on 39-bp primary repeat unit, with secondary, tertiary, and quartic repeat units, fully embedded in human hornerin gene, related to regenerating and psoriatric skin. Such an HOR is not found in chimpanzee chromosome 1. We find a remarkable human 3mer HOR organization based on the ~1.6-kb primary repeat unit, fully embedded within the neuroblastoma breakpoint family genes, which is related to the function of the human brain. Such HORs are not present in chimpanzees. In general, we find that human-chimpanzee differences are much larger for tandem repeats, in particularly for HORs, than for gene sequences. This may be of great significance in light of recent studies that are beginning to reveal the large-scale regulatory architecture of the human genome, in particular the role of noncoding sequences. We hypothesize about the possible importance of human accelerated HOR patterns as components in the gene expression multilayered regulatory network.
منابع مشابه
The NBPF Gene Family
Neuroblastoma is one of the most intensely studied solid malignancies that affect children (Maris & Matthay, 1999). These tumours are heterogeneous biologically and clinically. One subset of neuroblastoma is susceptible to spontaneous apoptosis with little or no therapy and another subset differentiates over time, but most of these tumours are difficult to cure with current treatments. A relati...
متن کاملBreakpoint analysis of the pericentric inversion distinguishing human chromosome 4 from the homologous chromosome in the chimpanzee (Pan troglodytes).
The study of breakpoints that occurred during primate evolution promises to yield valuable insights into the mechanisms underlying chromosome rearrangements in both evolution and pathology. Karyotypic differences between humans and chimpanzees include nine pericentric inversions, which may have potentiated the parapatric speciation of hominids and chimpanzees 5-6 million years ago. Detailed ana...
متن کاملSimilar numbers but different repertoires of olfactory receptor genes in humans and chimpanzees.
Animals recognize their external world through the detection of tens of thousands of chemical odorants. Olfactory receptor (OR) genes encode proteins for detecting odorant molecules and form the largest multigene family in mammals. It is known that humans have fewer OR genes and a higher fraction of OR pseudogenes than mice or dogs. To investigate whether these features are human specific or co...
متن کاملGene diversity patterns at ten X-chromosomal loci in humans and chimpanzees
We have investigated the pattern and extent of nucleotide diversity in 10 X-chromosomal genes where mutations are known to cause mental retardation in humans. For each gene, we sequenced the entire coding regions from cDNA in humans, chimpanzees and orangutans as well as about 3kb of genomic DNA in 20 humans sampled worldwide and in 10 chimpanzees representing two " subspecies ". Overall nucleo...
متن کاملNatural selection on the olfactory receptor gene family in humans and chimpanzees.
The olfactory receptor (OR) genes constitute the largest gene family in mammalian genomes. Humans have >1,000 OR genes, of which only approximately 40% have an intact coding region and are therefore putatively functional. In contrast, the fraction of intact OR genes in the genomes of the great apes is significantly greater (68%-72%), suggesting that selective pressures on the OR repertoire vary...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 28 6 شماره
صفحات -
تاریخ انتشار 2011